Photocatalytic Activity of Reactively Sputtered Titania Coatings Deposited Using a Full Face Erosion Magnetron

نویسندگان

  • Nick Farahani
  • Peter J. Kelly
  • Vladimir Vishnyakov
چکیده

Titanium dioxide (titania) is widely used as a photocatalyst for its moderate band gap, high photoactivity, recyclability, nontoxicity, low cost and its significant chemical stability. The anatase phase of titania is known to show the highest photocatalytic activity, however, the presence of this phase alone is not sufficient for sustained activity. In this study TiO2 coatings were deposited onto glass substrates by mid-frequency pulsed magnetron sputtering from metallic targets in reactive mode using a Full Face Erosion (FFE) magnetron, which allows the magnetic field to be modulated during the deposition process. The as-deposited coatings were analysed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and micro-Raman spectroscopy. Selected coatings were then annealed at temperatures in the range of 400–700 °C and re-analysed. The photocatalytic activity of the coatings was investigated through measurements of the degradation of organic dyes, such as methyl orange, under the influence of UV and fluorescent light sources. It has been demonstrated that, after annealing, the pulsed magnetron sputtering process produced photo-active surfaces and that the activity of the coatings under exposure to fluorescent lamps was some 35%–45% of that observed under exposure to UV lamps. OPEN ACCESS Coatings 2013, 3 178

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural formation and photocatalytic activity of magnetron sputtered titania and doped-titania coatings.

Titania and doped-titania coatings can be deposited by a wide range of techniques; this paper will concentrate on magnetron sputtering techniques, including "conventional" reactive co-sputtering from multiple metal targets and the recently introduced high power impulse magnetron sputtering (HiPIMS). The latter has been shown to deliver a relatively low thermal flux to the substrate, whilst stil...

متن کامل

Photocatalytic Properties of Doped TiO2 Coatings Deposited Using Reactive Magnetron Sputtering

Mechanically robust photocatalytic titanium oxide coatings can be deposited using reactive magnetron sputtering. In this article, we investigate the effect of doping on the activity of reactively sputtered TiO2. Silver, copper and stainless steel targets were used to co-deposit the dopants. The films were characterised using XRD, SEM and EDX. Adhesion and mechanical properties were evaluated us...

متن کامل

Optimization Studies of Photocatalytic Tungsten-Doped Titania Coatings Deposited by Reactive Magnetron Co-Sputtering

In this article we investigate the structural and photocatalytic properties of W-doped titanium dioxide coatings. TiO2-W thin films were deposited onto glass slides by reactive magnetron co-sputtering. The properties of the films were analyzed using such techniques as XRD, Raman spectroscopy, EDX, TEM, and surface profilometry. The photocatalytic properties of the coatings were assessed using t...

متن کامل

An Investigation into W or Nb or ZnFe2O4 Doped Titania Nanocomposites Deposited from Blended Powder Targets for UV/Visible Photocatalysis

The photocatalytic behavior of titania coatings is largely determined by their crystalline structure. Depending on deposition conditions, though, titania may form amorphous, brookite, anatase or rutile structures, with anatase or anatase/rutile mixed phase structures showing the highest levels of activity. Anatase is activated by UV light and, consequently, there is a great deal of interest in ...

متن کامل

A Novel Technique for the Deposition of Bismuth Tungstate onto Titania Nanoparticulates for Enhancing the Visible Light Photocatalytic Activity

A novel powder handling technique was used to allow the deposition of bismuth tungstate coatings onto commercial titanium dioxide photocatalytic nanoparticles. The coatings were deposited by reactive pulsed DC magnetron sputtering in an argon/oxygen atmosphere. The use of an oscillating bowl with rotary particle propagation, positioned beneath two closed-field planar magnetrons, provided unifor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013